

Instrument Expert Original factory packaging www.dorgean.com

OWNER'S MANUAL

QUANTUM SENSOR

Model SQ-204X

Rev: 12-Sept-2022

APOGEE INSTRUMENTS, INC. | 721 WEST 1800 NORTH, LOGAN, UTAH 84321, USA TEL: (435) 792-4700 | FAX: (435) 787-8268 | WEB: APOGEEINSTRUMENTS.COM

Copyright © 2022 Apogee Instruments, Inc.

TABLE OF CONTENTS

Owner's Manual1
Certificates of Compliance
Introduction
Sensor Models
Specifications
Deployment and Installation9
Cable Connectors
Operation and Measurement11
Maintenance and Recalibration
Troubleshooting and Customer Support18
Return and Warranty Policy

CERTIFICATE OF COMPLIANCE

EU Declaration of Conformity

This declaration of conformity is issued under the sole responsibility of the manufacturer:

Apogee Instruments, Inc. 721 W 1800 N Logan, Utah 84321 USA

for the following product(s):

Models: SQ-204X Type: Quantum Sensor

The object of the declaration described above is in conformity with the relevant Union harmonization legislation:

2014/30/EU	Electromagnetic Compatibility (EMC) Directive
2011/65/EU	Restriction of Hazardous Substances (RoHS 2) Directive
2015/863/EU	Amending Annex II to Directive 2011/65/EU (RoHS 3)

Standards referenced during compliance assessment:

EN 61326-1:2013	Electrical equipment for measurement, control, and laboratory use – EMC requirements
EN 63000:2018	Technical documentation for the assessment of electrical and electronic products with
	respect to the restriction of hazardous substances

Please be advised that based on the information available to us from our raw material suppliers, the products manufactured by us do not contain, as intentional additives, any of the restricted materials including lead (see note below), mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB), polybrominated diphenyls (PBDE), bis (2-ethylhexyl) phthalate (DEHP), butyl benzyl phthalate (BBP), dibutyl phthalate (DBP), and diisobutyl phthalate (DIBP). However, please note that articles containing greater than 0.1 % lead concentration are RoHS 3 compliant using exemption 6c.

Further note that Apogee Instruments does not specifically run any analysis on our raw materials or end products for the presence of these substances, but we rely on the information provided to us by our material suppliers.

Signed for and on behalf of: Apogee Instruments, September 2022

Bruce Bugbee President Apogee Instruments, Inc.

CERTIFICATE OF COMPLIANCE

UK Declaration of Conformity

This declaration of conformity is issued under the sole responsibility of the manufacturer:

Apogee Instruments, Inc. 721 W 1800 N Logan, Utah 84321 USA

for the following product(s):

Models: SQ-204X Type: Quantum Sensor

The object of the declaration described above is in conformity with the relevant UK Statutory Instruments and their amendments:

2016 No. 1091The Electromagnetic Compatibility Regulations 20162012 No. 3032The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic
Equipment Regulations 2012

Standards referenced during compliance assessment:

BS EN 61326-1:2013Electrical equipment for measurement, control, and laboratory use – EMC requirementsBS EN 63000:2018Technical documentation for the assessment of electrical and electronic products with
respect to the restriction of hazardous substances

Please be advised that based on the information available to us from our raw material suppliers, the products manufactured by us do not contain, as intentional additives, any of the restricted materials including lead (see note below), mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB), polybrominated diphenyls (PBDE), bis (2-ethylhexyl) phthalate (DEHP), butyl benzyl phthalate (BBP), dibutyl phthalate (DBP), and diisobutyl phthalate (DIBP). However, please note that articles containing greater than 0.1 % lead concentration are RoHS 3 compliant using exemption 6c.

Further note that Apogee Instruments does not specifically run any analysis on our raw materials or end products for the presence of these substances, but we rely on the information provided to us by our material suppliers.

Signed for and on behalf of: Apogee Instruments, September 2022

Bruce Bugbee President Apogee Instruments, Inc.

UK CA

INTRODUCTION

Radiation that drives photosynthesis is called photosynthetically active radiation (PAR) and is typically defined as total radiation across a range of 400 to 700 nm. PAR is often expressed as photosynthetic photon flux density (PPFD): photon flux in units of micromoles per square meter per second (μ mol m⁻² s⁻¹, equal to microEinsteins per square meter per second) summed from 400 to 700 nm (total number of photons from 400 to 700 nm). While Einsteins and micromoles are equal (one Einstein = one mole of photons), the Einstein is not an SI unit, so expressing PPFD as μ mol m⁻² s⁻¹ is preferred.

The acronym PPF is also widely used and refers to the photosynthetic photon flux. The acronyms PPF and PPFD refer to the same variable. The two terms have co-evolved because there is not a universal definition of the term "flux". Some physicists define flux as per unit area per unit time. Others define flux only as per unit time. We have used PPFD in this manual because we feel that it is better to be more complete and possibly redundant.

Sensors that measure PPFD are often called quantum sensors due to the quantized nature of radiation. A quantum refers to the minimum quantity of radiation, one photon, involved in physical interactions (e.g., absorption by photosynthetic pigments). In other words, one photon is a single quantum of radiation.

Typical applications of quantum sensors include incoming PPFD measurement over plant canopies in outdoor environments or in greenhouses and growth chambers and reflected or under-canopy (transmitted) PPFD measurement in the same environments.

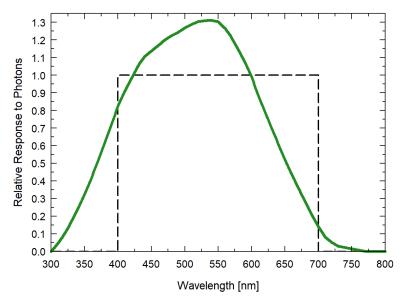
Apogee Instruments SQ-100X series quantum sensors consist of a cast acrylic diffuser (filter), interference filter, photodiode, and signal processing circuitry mounted in an anodized aluminum housing, and a cable to connect the sensor to a measurement device. Sensors are potted solid with no internal air space and are designed for continuous PPFD measurement in indoor or outdoor environments. SQ-100X series sensors output an analog voltage that is directly proportional to PPFD. The voltage signal from the sensor is directly proportional to radiation incident on a planar surface (does not have to be horizontal), where the radiation emanates from all angles of a hemisphere.

SENSOR MODELS

This manual covers the amplified output quantum sensor model SQ-204X (listed in bold below). Additional models are covered in their respective manuals.

Model	Signal
SQ-204X	4-20 mA
SQ-100X	0-800 mV
SQ-202X	0-2.5 V
SQ-205X	0-5 V
SQ-420X	USB
SQ-421X	SDI-12
SQ-422X	Modbus

A sensor's model number and serial number are located on the bottom of the sensor. If you need the manufacturing date of your sensor, please contact Apogee Instruments with the serial number of your sensor.

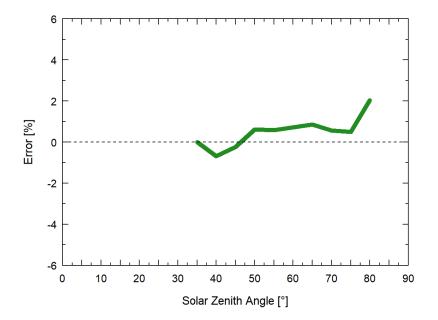

SPECIFICATIONS

	SQ-204X-SS			
Power Supply	7 to 24 V DC with a maximum current draw 22 mA (2 mA quiescent current draw)			
Sensitivity	0.004 mA per μmol m ⁻² s ⁻¹			
Calibration Factor	250 μmol m ⁻² s ⁻¹ per mA (reciprocal of sensitivity)			
Calibration Uncertainty	± 5 % (see calibration Traceability below)			
Calibrated Output Range	4 to 20 mA			
Measurement Repeatability	Less than 0.5 %			
Long-term Drift (Non-stability)	Less than 2 % per year			
Non-linearity	Less than 1 % (up to 4000 μ mol m ⁻² s ⁻¹)			
Response Time	Less than 1 ms			
Field of View	180°			
Spectral Range	370 to 650 nm (wavelengths where response is greater than 50 % of maximum; see Spectral Response below)			
Directional (Cosine) Response	± 5 % at 75° zenith angle (see Cosine Response below)			
Temperature Response	0.06 ± 0.06 % per C			
Operating Environment	-40 to 70 C; 0 to 100 % relative humidity; can be submerged in water up to depths of 30 m			
Dimensions	30.5 mm diameter, 37 mm height			
Mass (with 5 m cable)	140 g			
Cable	5 m of four conductor, shielded, twisted-pair wire; TPR jacket; pigtail lead wires; stainless steel (316), M8 connector			

Calibration Traceability

Apogee SQX series quantum sensors are calibrated through side-by-side comparison to the mean of transfer standard quantum sensors under a reference lamp. The reference quantum sensors are recalibrated with a 200 W quartz halogen lamp traceable to the National Institute of Standards and Technology (NIST).

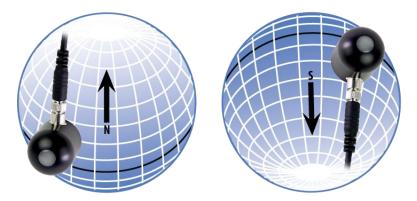
Spectral Response



Mean spectral response of four SQ-100x series quantum sensors compared to PPFD weighting function. Spectral response measurements were made at 10 nm increments across a wavelength range of 350 to 800 nm in a monochromator with an attached electric light source. Measured spectral data from each quantum sensor were normalized by the measured spectral response of the monochromator/electric light combination, which was measured with a spectroradiometer.

Cosine Response

Directional, or cosine, response is defined as the measurement error at a specific angle of radiation incidence. Error for Apogee SQ-100X series quantum sensors is approximately \pm 2 % and \pm 5 % at solar zenith angles of 45° and 75°, respectively.


Mean cosine response of five SQ-100X series quantum sensors. Cosine response measurements were made by direct side-by-side comparison to the mean of seven reference SQ-500 quantum sensors.

DEPLOYMENT AND INSTALLATION

Mount the sensor to a solid surface with the nylon mounting screw provided. To accurately measure PPFD incident on a horizontal surface, the sensor must be level. An Apogee Instruments model AL-100 Leveling Plate is recommended to level the sensor when used on a flat surface or being mounted to surfaces such as wood. To facilitate mounting on a mast or pipe, the Apogee Instruments model AL-120 Solar Mounting Bracket with Leveling Plate is recommended.

To minimize azimuth error, the sensor should be mounted with the cable pointing toward true north in the northern hemisphere or true south in the southern hemisphere. Azimuth error is typically less than 1 %, but it is easy to minimize by proper cable orientation.

In addition to orienting the cable to point toward the nearest pole, the sensor should also be mounted such that obstructions (e.g., weather station tripod/tower or other instrumentation) do not shade the sensor. **Once mounted, the blue cap should be removed from the sensor.** The blue cap can be used as a protective covering for the sensor when it is not in use.

CABLE CONNECTORS

Apogee sensors offer cable connectors to simplify the process of removing sensors from weather stations for calibration (the entire cable does **not** have to be removed from the station and shipped with the sensor).

The ruggedized M8 connectors are rated IP68, made of corrosion-resistant marine-grade stainless-steel, and designed for extended use in harsh environmental conditions.

Cable connectors are attached directly to the head.

Instructions

Pins and Wiring Colors: All Apogee connectors have six pins, but not all pins are used for every sensor. There may also be unused wire colors inside the cable. To simplify datalogger connection, we remove the unused pigtail lead colors at the datalogger end of the cable.

If a replacement cable is required, please contact Apogee directly to ensure ordering the proper pigtail configuration.

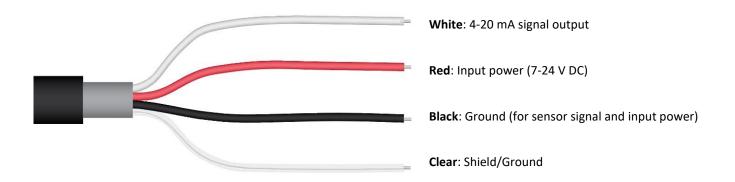
Alignment: When reconnecting a sensor, arrows on the connector jacket and an aligning notch ensure proper orientation.

Disconnection for extended periods: When disconnecting the sensor for an extended period of time from a station, protect the remaining half of the connector still on the station from water and dirt with electrical tape or other method.

Tightening: Connectors are designed to be firmly finger-tightened only. There is an oring inside the connector that can be overly compressed if a wrench is used. Pay attention to thread alignment to avoid cross-threading. When fully tightened, 1-2 threads may still be visible.

WARNING: Do not tighten the connector by twisting the black cable or sensor head, only twist the metal connector (blue arrows).

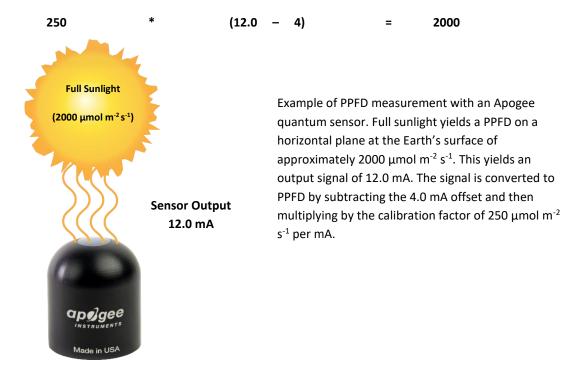
A reference notch inside the connector ensures proper alignment before tightening.


When sending sensors in for calibration, only send the sensor head.

OPERATION AND MEASUREMENT

Connect the sensor to a measurement device (meter, datalogger, controller) capable of measuring and displaying a 4-20 mA signal. In order to maximize measurement resolution and signal-to-noise ratio, the input range of the measurement device should closely match the output range of the quantum sensor. **DO NOT connect the sensor** to a power source greater than 24 V DC.

Wiring for SQ-204X


Sensor Calibration

Apogee SQ-204X models have a standard PPFD calibration factor of exactly:

250.0 $\mu mol~m^{\text{-2}}~s^{\text{-1}}$ per mA with a 4 mA offset

Multiply this calibration factor by the difference of the measured mA signal and the 4.0 mA offset to convert sensor output to PPFD in units of μ mol m⁻² s⁻¹:

Calibration Factor (250 µmol m⁻² s⁻¹ per mA) * [Sensor Output Signal (mA) – Offset (4.0 mA)] = PPFD (µmol m⁻² s⁻¹)

Spectral Errors

Apogee SQ-100X series sensors can measure PPFD for sunlight and electric light with a single calibration factor. However, errors occur in various light sources due to changes in spectral output. If the light source spectrum is known, then errors can be estimated and used to adjust the measurements. The weighting function for PPFD is shown in the graph below, along with the spectral response of Apogee SQ-100X series quantum sensors. The closer the spectral response matches the defined PPFD spectral weighting functions, the smaller spectral errors will be. The table below provides spectral error estimates for PPFD measurements from light sources different than the calibration source. The method of Federer and Tanner (1966) was used to determine spectral errors based on the PPFD spectral weighting functions, measured sensor spectral response, and radiation source spectral outputs (measured with a spectroradiometer). This method calculates spectral error and does not consider calibration, cosine, and temperature errors.

Federer, C. A., and C. B. Tanner, 1966. Sensors for measuring light available for photosynthesis. Ecology 47:654-657.

McCree, K. J., 1972. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agricultural Meteorology 9:191-216.

Radiation Source (Error Calculated Relative to Sun, Clear Sky)	PPFD Error [%]
Sun (Clear Sky)	0.0
Sun (Cloudy Sky)	0.2
Reflected from Grass Canopy	5.0
Reflected from Deciduous Canopy	7.0
Reflected from Conifer Canopy	7.3
Transmitted below Grass Canopy	8.3
Transmitted below Deciduous Canopy	8.4
Transmitted below Conifer Canopy	10.1
Cool White Fluorescent (T5)	7.2
Cool White Fluorescent (T12)	8.3
Metal Halide	6.9
Ceramic Metal Halide	-0.9
High Pressure Sodium	3.2
Blue LED (448 nm peak, 20 nm full-width half-maximum)	14.5
Green LED (524 nm peak, 30 nm full-width half-maximum)	29.6
Red LED (635 nm peak, 20 nm full-width half-maximum)	-30.9
Red, Blue LED Mixture (80 % Red, 20 % Blue)	-21.2
Red, Green, Blue LED Mixture (70 % Red, 15 % Green, 15 % Blue)	-16.4
Cool White Fluorescent LED	7.3
Neutral White Fluorescent LED	1.1
Warm White Fluorescent LED	-7.8

Spectral Errors for PPFD and YPFD Measurements with Apogee SQ-100X Series Quantum Sensors

Quantum sensors can be a very practical means of measuring PPFD and YPFD from multiple radiation sources, but spectral errors must be considered. The spectral errors in the table above can be used as correction factors for individual radiation sources.

Underwater Measurements and Immersion Effect

When a quantum sensor that was calibrated in air is used to make underwater measurements, the sensor reads low. This phenomenon is called the immersion effect and happens because the refractive index of water (1.33) is greater than air (1.00). The higher refractive index of water causes more light to be backscattered (or reflected) out of the sensor in water than in air (Smith, 1969; Tyler and Smith, 1970). As more light is reflected, less light is transmitted through the diffuser to the detector, which causes the sensor to read low. Without correcting for this effect, underwater measurements are only relative, which makes it difficult to compare light in different environments.

The SQ-100X series sensors have an immersion effect correction factor of 1.15. This correction factor should be multiplied to measurements made underwater.

Further information on underwater measurements and the immersion effect can be found at http://www.apogeeinstruments.com/underwater-par-measurements/.

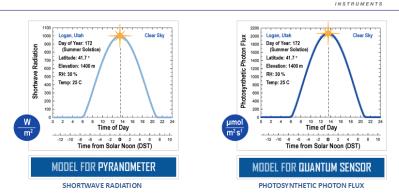
MAINTENANCE AND RECALIBRATION

Blocking of the optical path between the target and detector can cause low readings. Occasionally, accumulated materials on the diffuser of the upward-looking sensor can block the optical path in three common ways:

- 1. Moisture or debris on the diffuser.
- 2. Dust during periods of low rainfall.
- 3. Salt deposit accumulation from evaporation of sea spray or sprinkler irrigation water.

Apogee Instruments upward-looking sensors have a domed diffuser and housing for improved self-cleaning from rainfall, but active cleaning may be necessary. Dust or organic deposits are best removed using water, or window cleaner, and a soft cloth or cotton swab. Salt deposits should be dissolved with vinegar and removed with a cloth or cotton swab. Salt deposits <u>cannot</u> be removed with solvents such as alcohol or acetone. Use only gentle pressure when cleaning the diffuser with a cotton swab or soft cloth to avoid scratching the outer surface. The solvent should be allowed to do the cleaning, not mechanical force. Never use abrasive material or cleaner on the diffuser.

Although Apogee sensors are very stable, nominal accuracy drift is normal for all research-grade sensors. To ensure maximum accuracy, we generally recommend sensors are sent in for recalibration every two years, although you can often wait longer according to your particular tolerances.


To determine if your sensor needs recalibration, the Clear Sky Calculator (<u>www.clearskycalculator.com</u>) website and/or smartphone app can be used to indicate the total shortwave radiation incident on a horizontal surface at any time of day at any location in the world. It is most accurate when used near solar noon in spring and summer months, where accuracy over multiple clear and unpolluted days is estimated to be ± 4 % in all climates and locations around the world. For best accuracy, the sky must be completely clear, as reflected radiation from clouds causes incoming radiation to increase above the value predicted by the clear sky calculator. Measured values of total shortwave radiation can exceed values predicted by the Clear Sky Calculator due to reflection from thin, high clouds and edges of clouds, which enhances incoming shortwave radiation. The influence of high clouds typically shows up as spikes above clear sky values, not a constant offset greater than clear sky values.

To determine recalibration need, input site conditions into the calculator and compare total shortwave radiation measurements to calculated values for a clear sky. If sensor shortwave radiation measurements over multiple days near solar noon are consistently different than calculated values (by more than 6 %), the sensor should be cleaned and re-leveled. If measurements are still different after a second test, email <u>calibration@apogeeinstruments.com</u> to discuss test results and possible return of sensor(s).

This calculator determines the intensity of radiation falling on a horizontal surface at any time of the day in any location in the world. The primary use of this calculator is to determine the need for recalibration of radiation sensors. It is most accurate when used near solar noon in the summer months.

This site developed and maintained by: apgee

Homepage of the Clear Sky Calculator. Two calculators are available: one for quantum sensors (PPFD) and one for pyranometers (total shortwave radiation).

CALCULATOR OVANTUM SENSORS		Input Parameters for Estimating Photosynthetic Photon Flux (PPF):			+ Output from Model:	
	y, comparison should be made on clear, non- er days within one hour of solar noon.	Latitude =	41.7	·	Model Estimated PPF = 1994 µmol m ⁻² s ⁻¹	
Enter input para	maters in the blue calls at sight Definitions	Longitude =	111.8	•	Measured PPE = 1990 µmol m ⁻² s ⁻¹	
2 Enter input parameters in the blue cells at right. Definitions are shown below.		Longitude _{tz} = 🍘	105	•	DIFFERENCE FROM MODEL = -0.2 %	
 Sensor must be level and perfectly clean. Enter your measured solar radiation in the blue "<u>Measured PPF</u>" cell at far right. 		Elevation = 🕐	1400	m	+ CONTACT APOGEE FOR RECALIBRATION	
		Day of Year = 🕐	172		Name:	
4 Difference between the model and your sensor is shown in	Time of Day =	12.9		E-mail:		
the yellow "DIFF	ERENCE FROM MODEL" cell at right.	(6 min = 0.1 hr)				
3 Run the model on replicate days. Contact Apogee for recalibration if the measured value is more than 5 % different than the estimated value. You will be contacted within two business days. For a discussion on model accuracy and sensitivity of input parameters, CLICK HERE.		Daylight Savings = +	1	hr	Phone:	
		Air Temperature =	25	с	Serial #:	
		Relative Humidity =	30	%	Comments:	
		RECALCULATE MODEL			Please include all requested information.	
	TPUT DEFINITIONS				2 .	
.atitude =	latitude of the measurement site [degrees number; info may be obtained from http://			negative	This site is developed and maintained by:	
Longitude =	longitude of the measurement site [degre				calibration@apogee-inst.com	

Clear Sky Calculator for quantum sensors. Site data are input in blue cells in middle of page and an estimate of PPFD is returned on right-hand side of page.

Longitude = longitude of the measurement site [degrees]; expressed as positive degrees west of the standard meridian in Greenwich, England (e.g. 74° for New York, 260° for Bangkok, Thaliand, and 358° for Paris, France).

Longitude17 = longitude of the center of your local time zone [degrees]; expressed as positive degrees

TROUBLESHOOTING AND CUSTOMER SUPPORT

Independent Verification of Functionality

Apogee model SQ-204X quantum sensors provide a 4-20 mA output that is proportional to incident PPFD. A quick and easy check of sensor functionality can be determined using a DC power supply and an ammeter. Power the sensor with a DC voltage by connecting the positive voltage signal to the red wire from the sensor and the negative (or common) to the black wire from the sensor. Use the ammeter to measure across the white wire (signal output) and black wire (signal ground). Direct the sensor head toward a light source and verify the sensor provides a signal. Increase and decrease the distance from the sensor head to the light source to verify that the signal changes proportionally (decreasing signal with increasing distance and increasing signal with decreasing distance). Blocking all radiation from the sensor should force the sensor signal to 4 mA.

Compatible Measurement Devices (Dataloggers/Controllers/Meters)

SQ-214X quantum sensors are calibrated with a standard calibration factor of 250 μ mol m⁻² s⁻¹ per mA, yielding a sensitivity of 0.004 mA per μ mol m⁻² s⁻¹. Thus, a compatible measurement device (e.g., datalogger or controller) should have resolution of at least 0.004 mA, in order to provide PPFD resolution of 1 μ mol m⁻² s⁻¹.

The 4-20 mA circuit design allows the output to drive a resistive load (R_L) to within 2 volts of the supply voltage to the sensor (V_S), at 20 mA (0.02 A). The equation to calculate resistive load is $R_L = [V_S - 2 V] / 0.02 A$. For example, a sensor with a supply voltage of 12 V DC can drive a maximum load of 500 Ω ($R_L = [12 V - 2 V] / 0.02 A = 500 \Omega$). The output voltage from the sensor is calculated by adding the wire resistance to the input resistance of the data collection system, and then multiplying by 0.02 A.

Effect of Cable Length

Shortening or splicing on additional cable in the field is generally not a problem for the current output of the SQ-204X. However, adding cable will result in a greater resistive load, which should be taken into consideration when determining the maximum resistive load that the sensor will drive (see section above on Compatible Measurement Devices). Apogee model SQ series quantum sensors use shielded, twisted pair cable, which minimizes electromagnetic interference. This is particularly important for long lead lengths in electromagnetically noisy environments.

Modifying Cable Length

See Apogee webpage for details on how to extend sensor cable length: (http://www.apogeeinstruments.com/how-to-make-a-weatherproof-cable-splice/).

Unit Conversion Charts

Apogee SQX series quantum sensors are calibrated to measure PPFD in units of µmol m⁻² s⁻¹. Units other than photon flux density (e.g., energy flux density, illuminance) may be required for certain applications. It is possible to convert the PPFD value from a quantum sensor to other units, but it requires spectral output of the radiation source of interest. Conversion factors for common radiation sources can be found on the Unit Conversions page of the Support Center on the Apogee website (<u>http://www.apogeeinstruments.com/unit-conversions/</u>). A spreadsheet to convert PPFD to energy flux density or illuminance is also provided on the Unit Conversions page of the Support Center on the Apogee website (<u>http://www.apogeeinstruments.com/content/PPFD-to-Illuminance-Calculator.xls</u>).

RETURN AND WARRANTY POLICY

RETURN POLICY

Apogee Instruments will accept returns within 30 days of purchase as long as the product is in new condition (to be determined by Apogee). Returns are subject to a 10 % restocking fee.

WARRANTY POLICY

What is Covered

All products manufactured by Apogee Instruments are warranted to be free from defects in materials and craftsmanship for a period of four (4) years from the date of shipment from our factory. To be considered for warranty coverage an item must be evaluated by Apogee.

Products not manufactured by Apogee (spectroradiometers, chlorophyll content meters, EE08-SS probes) are covered for a period of one (1) year.

What is Not Covered

The customer is responsible for all costs associated with the removal, reinstallation, and shipping of suspected warranty items to our factory.

The warranty does not cover equipment that has been damaged due to the following conditions:

- 1. Improper installation, use, or abuse.
- 2. Operation of the instrument outside of its specified operating range.
- 3. Natural occurrences such as lightning, fire, etc.
- 4. Unauthorized modification.
- 5. Improper or unauthorized repair.

Please note that nominal accuracy drift is normal over time. Routine recalibration of sensors/meters is considered part of proper maintenance and is not covered under warranty.

Who is Covered

This warranty covers the original purchaser of the product or other party who may own it during the warranty period.

What Apogee Will Do

At no charge Apogee will:

- 1. Either repair or replace (at our discretion) the item under warranty.
- 2. Ship the item back to the customer by the carrier of our choice.

Different or expedited shipping methods will be at the customer's expense.

20

How To Return An Item

1. Please do not send any products back to Apogee Instruments until you have received a Return Merchandise Authorization (RMA) number from our technical support department by submitting an online RMA form at <u>www.apogeeinstruments.com/tech-support-recalibration-repairs/</u>. We will use your RMA number for tracking of the service item. Call (435) 245-8012 or email techsupport@apogeeinstruments.com with questions.

2. For warranty evaluations, send all RMA sensors and meters back in the following condition: Clean the sensor's exterior and cord. Do not modify the sensors or wires, including splicing, cutting wire leads, etc. If a connector has been attached to the cable end, please include the mating connector – otherwise the sensor connector will be removed in order to complete the repair/recalibration. *Note:* When sending back sensors for routine calibration that have Apogee's standard stainless-steel connectors, you only need to send the sensor with the 30 cm section of cable and one-half of the connector. We have mating connectors at our factory that can be used for calibrating the sensor.

3. Please write the RMA number on the outside of the shipping container.

4. Return the item with freight pre-paid and fully insured to our factory address shown below. We are not responsible for any costs associated with the transportation of products across international borders.

Apogee Instruments, Inc. 721 West 1800 North Logan, UT 84321, USA

5. Upon receipt, Apogee Instruments will determine the cause of failure. If the product is found to be defective in terms of operation to the published specifications due to a failure of product materials or craftsmanship, Apogee Instruments will repair or replace the items free of charge. If it is determined that your product is not covered under warranty, you will be informed and given an estimated repair/replacement cost.

PRODUCTS BEYOND THE WARRANTY PERIOD

For issues with sensors beyond the warranty period, please contact Apogee at <u>techsupport@apogeeinstruments.com</u> to discuss repair or replacement options.

OTHER TERMS

The available remedy of defects under this warranty is for the repair or replacement of the original product, and Apogee Instruments is not responsible for any direct, indirect, incidental, or consequential damages, including but not limited to loss of income, loss of revenue, loss of profit, loss of data, loss of wages, loss of time, loss of sales, accruement of debts or expenses, injury to personal property, or injury to any person or any other type of damage or loss.

This limited warranty and any disputes arising out of or in connection with this limited warranty ("Disputes") shall be governed by the laws of the State of Utah, USA, excluding conflicts of law principles and excluding the Convention for the International Sale of Goods. The courts located in the State of Utah, USA, shall have exclusive jurisdiction over any Disputes.

This limited warranty gives you specific legal rights, and you may also have other rights, which vary from state to state and jurisdiction to jurisdiction, and which shall not be affected by this limited warranty. This warranty extends only to you and cannot by transferred or assigned. If any provision of this limited warranty is unlawful, void, or unenforceable, that provision shall be deemed severable and shall not affect any remaining provisions. In case of any inconsistency between the English and other versions of this limited warranty, the English version shall prevail.

This warranty cannot be changed, assumed, or amended by any other person or agreement.